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We consider the probability distribution of large deviations in the spin-glass free energy for the Sherrington-
Kirkpatrick mean-field model, i.e., the exponentially small probability of finding a system with intensive free
energy smaller than the most likely one. This result is obtained by computing ��n ,T�=TZn /n, i.e., the average
value of the partition function to the power n as a function of n. We study in full details the phase diagram of
��n ,T� in the �n ,T� plane computing in particular the stability of the replica-symmetric solution. At low
temperatures we compute ��n ,T� in series of n and �=Tc−T at high orders using the standard hierarchical
ansatz and confirm earlier findings on the O�n5� scaling. We prove that the O�n5� scaling is valid at all orders
and obtain an exact expression for the coefficient in term of the function q�x�. Resumming the series we obtain
the large deviations probability at all temperatures. At zero temperature the analytical prediction displays a
remarkable quantitative agreement with the numerical data. A similar computation for the simpler spherical
model is also performed and the connection between large and small deviations is discussed.
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I. INTRODUCTION

The theory of disordered systems is mainly concerned
with predictions regarding the most likely behavior, but it is
also interesting to develop techniques to compute the prob-
ability distribution of rare events, i.e., the probability of find-
ing systems that have properties different from the typical
ones. There are various motivations:

�i� We may have a special interest in those systems with a
behavior different from the most likely one; for example, in
constraint optimization problems, in the region where it is
impossible to satisfy all the constraints in the most likely
system, there is a great interest in computing the properties
of those rare systems where we can find a configuration that
satisfies all the constraints.1

�ii� The properties of large fluctuations may be related to
other more interesting properties of the system. For example
given an intensive quantity AJ that depends on the system J
of size N, in the large deviation region for large N we usually
have that PN�A��exp�−NL�A��. It is quite common that
there are relations among the behavior of PN�A� in the region
where the probability remains finite when N goes to infinity
and the behavior of L�A� near the point where L�A�=0. In
other cases2 the techniques used to compute large deviations
are the same used to compute other important quantities such
as �in finite-dimensional spin glasses� the typical difference
of the energy with periodic and antiperiodic boundary con-
ditions. Besides sample to sample fluctuations have been re-
cently shown to be related to chaos in spin glasses.3

�iii� We notice also that the comparison between analytic
predictions in the large deviations region and numerical or
experimental data could be important as a clear-cut test of
the theoretical approach used to compute the most likely
properties.

Unfortunately even in the simplest nontrivial case, i.e., the
Sherrington-Kirkpatrick �SK� infinite range model for spin
glasses, there is no consensus on the results of such a com-

putation. Everybody agrees that as a first step we need to
compute in the large N limit the thermodynamic function

��n,�� = −
1

�nN
ln ZJ���n, �1�

where different systems �or samples� are labeled by J, ZJ���
is the partition function, and the bar denotes the average over
different disordered samples. It is well known that the prob-
ability of large deviations is related to the function ��n ,��.
Indeed

exp�− �nN��n,��� = ZJ���n = exp�− nN�fJ���� , �2�

where fJ is the system-dependent free energy per spin. The
region of positive n corresponds to fluctuations where the
free energy is smaller than the typical one and the region on
negative n corresponds to fluctuations where the free energy
is larger than the typical one.

There is a disagreement in the literature on the strategy
we should follow to compute ��n ,��. In the n→0 limit the
computation can be done using the broken replica symmetry
ansatz �that is known to give the exact result�, where it
coincides with the most likely free energy ��0,��= f typ
or equivalently with the average equilibrium free energy
feq= f typ.

For n�0 Kondor4 in 1983 presented a first computation
of ��n ,�� in the region near Tc using the most natural ansatz
for replica symmetry breaking �RSB� obtaining in the region
of positive n,

��n,�� = f typ + c5n5 + O�n6� . �3�

The result of Kondor4 was surprising: in the general case all
powers of n are present in the Taylor expansion of ��n ,��
and for most of the systems we have ��n ,��= f typ+A1n
+O�n2�, that is the typical situations for a Gaussian distribu-
tion of the free energy. The absence of the powers from n1 to
n4 is due to cancellations and it was not clear if they were
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present only near the critical temperature. This form of the
large deviation function implies that the probability distribu-
tion for f near �and smaller than� f typ is of the form

PN�f� � exp�− Na6/5�f typ − f�6/5� , �4�

where a6/5=5�6−6/5�c5�−1/5. The above relationship is valid
for a small negative value of the free-energy difference �f
= f − f typ that remains finite in the thermodynamic limit. How-
ever it has not been possible to test directly Kondor predic-
tion because presently all numerical data concern the fluc-
tuations of the ground-state energy, i.e., the system is at zero
temperature. Indeed at zero temperature the free energy co-
incides with the internal energy and the numerical data are
cleaner due to the absence of thermal noise. Instead many
efforts have been concentrated on the scaling of the small
deviations of the free energy. Indeed based on Kondor’s re-
sult and a matching argument �see discussion below� it was
suggested in Ref. 5 that the small deviations from its mean of
the free energy per spin scale as N−5/6. This prediction has
been put to test in a series of numerical works6–12 and al-
though all estimates are smaller than 5/6 nobody has claimed
that this value is definitively ruled out. More recent results
strongly indicate that the fluctuations of the internal energy
per spin at finite temperature scale as N−5/6, thus confirming
the exponent obtained from.13 However it was difficult to test
the theory in absence of a quantitative prediction �the only
prediction being on the exponent, a quantity that it is rather
difficult to measure in a reliable way�. Furthermore, the po-
tential ��n ,beta� is naturally related to large deviations
while the matching argument connection with the small de-
viation exponent is not rigorous �see discussion below�.

More recently a different RSB ansatz was proposed
by Aspelmeier and Moore,14 and De Dominicis and
Di Francesco15 who found ��n�= f typ; in their approach the
probability of large deviations goes to zero faster than
exp�−L�f�N� and the matching argument cannot be used to
infer the small deviations exponent. Indeed there is a general
agreement that for negative n ��n�= f typ and PN�f� goes to
zero faster than exp�−CN� as soon f � f typ. Recent results16

show that in that region we have PN�f��exp�−N2L2�f��,
where the function L2�f� can be computed through the rep-
lica method. This O�N2� scaling of the logarithm of the large
deviations probability in the positive �f region is also ob-
served in the spherical model where it has been recently
derived using random matrix theory.17

We have concentrated on large deviations in the region
f � f typ that corresponds to positive n. We have followed
Kondor’s approach and extended his computation to all tem-
peratures including T=0; in this way we have obtained an
absolute prediction for the large deviations distribution.
Comparing our analytic results to the numerical simulations
performed at zero temperature we found a remarkable agree-
ment. We have worked in perturbation theory assuming small
�=T−Tc and small n and used appropriate resummation
techniques to extend the computation down to zero tempera-
ture. We have also verified analytically that the O�n5� scaling
holds at all orders in perturbation theory and obtained an
exact relationship between the corresponding coefficient and
the derivative at x=0 of the standard q�x� function.

We also found that the alternative approach14,15 that pre-
dicts ��n�= f typ for both negative and positive values of n
cannot be valid for large positive n and there are no compel-
ling reasons for which it should be valid at fixed positive n
when N goes to infinity. This is in agreement with the results
coming from an exact analysis: for positive values of n
Talagrand18 was able to show rigorously that Kondor’s ap-
proach gives the correct results.

The paper is organized as follows. In Sec. II we introduce
the functionals and the saddle-point equations. In Sec. III we
discuss the replica-symmetric �RS� solution and its stability,
we compute the de Almeida–Thouless line in the �n ,T�
plane, and we discuss the behavior of the sample complexity
above the critical temperature. In Sec. IV we discuss the
sample complexity in the low-temperature phase and com-
pare it to the numerical data. In Sec. V we present a similar
treatment of the spherical model, which being RS is consid-
erably simpler. In Sec. VI we discuss the connection between
large and small deviations. In Sec. VII we give our conclu-
sions. In Appendix A we report the power series of ��n ,T�
up to the 18th order. In Appendix B we present an analytical
argument to prove that the O�n5� scaling is valid at all orders
in perturbation theory and an exact relationship between the
coefficient and the derivative dq /dx in x=0. A brief report on
these results has been given in Ref. 19.

II. SAMPLE COMPLEXITY

We define the large deviation function for the free energy,
L�f�, �that we will call in the following the sample complex-
ity because it is related to the number of samples with free
energy equal to f� as the logarithm divided by N of the prob-
ability density of samples with free energy per spin f in the
thermodynamic limit

L�f� = lim
N→�

log�PN�f��
N

. �5�

For large N the majority of the samples has free energy per
spin equal to f typ and all other values have exponentially
small probability. Consistently L�f� is less or equal than zero,
the equality holding f = f typ, i.e., L�f typ�=0. For some values
of f it is possible that L�f�=−�, meaning that the probability
of large deviations goes to zero faster than exponentially
with N. In the thermodynamic limit the function ��n ,�� de-
fined in Eq. �1� yields the Legendre transform of L�f�,5 in-
deed we have

− �n��n� = − �nf + L�f� , �6�

where f is determined by the condition

�n =
�L

� f
, �7�

and equivalently we have

L�f� = �nf − �n��n� , �8�

where �n is determined by the condition
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f =
�n�

�n
. �9�

Note that at any finite N, n��n� is also the generating func-
tion of the cumulants of the distribution of the free energy.

In the Sherrington-Kirkpatrick model at low temperatures
the replica symmetry is spontaneously broken for the generic
system, i.e., in the n→0 limit. One knows that at high posi-
tive values of n, replica symmetry is not broken.20 Therefore
for positive n one must distinguish two regions in the T−n
plane separated by the so-called de Almeida–Thouless �dAT�
line �see Fig. 1�. In the region above the dAT line, the phase
is replica symmetric, while replica symmetry is broken be-
low.

III. REPLICA-SYMMETRIC PHASE

In the RS region the order parameter is the overlap q. The
corresponding value of the potential ��n ,q� is given by

��n,���q� = −
�

4
�1 − 2q + �1 − n�q2�

−
1

�n
ln �

−�

+� dy
�2	q

e−y2/2q�2 cosh �y�n.

The overlap q can be computed by solving the equation
���n ,q� /�q=0 that yields

q =
� e−y2/2q�cosh �y�ntanh2 �ydy

� e−y2/2q�cosh �y�ndy

�10�

A. High-temperature region

The search for solutions with q�0 of Eq. �10� at given T
and n was done integrating numerically the right-hand side
for different values of q and checking if the corresponding
curve y=y�q� crosses the line y=q.

In the high-temperature region T�1 the solution in the
n→0 limit is replica symmetric with q=0. For small n there
is no other solution, therefore ��n�= fRS	−� /4−ln 2 /�. At
n=n��T� a new solution appears, but it has a value of
�RS,q�0�n� larger than fRS and must be discarded ���n� must
be a continuous function of n�. As soon as n�n��T� the
solution bifurcates into two solutions q��n��q��n� with the
largest solution having a smaller value of ��n� than the
other. Increasing n we cross the line n=nc�T��n��T�, where
�RS,q�

�n�= fRS and the RS solution q��n� becomes the
physical solution for all n�nc�T�. Summarizing the behavior
of n��n� as a function of n in the high-temperature phase is

n��n� = nfRS for n � nc,

n��n� = ncfRS + fRS,qc
�n + O��n�2 for n � nc,

where �n	n−nc and we have omitted the dependence on
the temperature of fRS, nc, and fRS,qc

	�n� /�n �n=nc
+. At

n=nc the order parameter jumps from zero to qc	q��nc� and
the free energy turns out to be discontinuous too:
fRS,qc

� fRS. Thus as a function of n n��n� has a first-order
transition at n=nc�T� �see Fig. 1�. This peculiar behavior of
��n� reflects itself in the following structure of L�f� as fol-
lows from Eqs. �6�–�9�:

L�f� = 0 for f = fRS,

L�f� = − � for fRS,qc
� f � fRS,

L�f� = − �nc�fRS − fRS,qc
� + �nc�f + O��f�2 for �f 
 0,

where �f 	 f − fRS,qc
.

To understand this double-peak behavior of L�f� it can be
useful to think of the random-energy model �REM�.21 In the
typical sample the number of energy levels with energy E is
proportional to exp�N ln 2−NE2� and there are no levels out-
side the band �−�ln 2 ,�ln 2�. In the high-temperature phase
the energy of the typical sample is given by the point where
the derivative of �ln 2−E2� is equal to �, i.e., E=−� /2 and
the critical temperature is given by �c=2�ln 2. The free en-
ergy is given by F=−� /4−ln 2 /�. Now in order to reduce
the energy of such a sample at fixed ���c one should
modify the structure of the energy levels. One can see that
any modification of the global shape of the distribution of
the N energy levels has a prohibitive price with a probability
O�exp�−2N��, nevertheless one could instead pull a level out
of the band with a cost in probability O�exp�N��. Normally
the energy of the lowest level is −�ln 2 which is larger than
the free energy of the levels with energy −� /2. Thus a small
modification of the lowest level will not have any effect on
the total free energy that will be still dominated by the levels
with E=−� /2. Only when the energy of the lowest level
becomes smaller than −� /4−ln 2 /� the thermodynamics of

βn
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FIG. 1. Phase diagram of ��n� in the �T ,�n� plane. In the
paramagnetic phase the solution is RS with q=0 and ��n ,��
=−� /4−ln 2 /�. Dashed line �nc�T� marks a first-order transition to
a RS spin-glass phase where q jumps from zero to a finite value
qc�T�. The line nc�T� ends at the point �T=1, n=2� where qc=0.
Vertical line from the point �1,0� to �1,2� marks a phase transition
from a paramagnetic to a RS spin-glass phase with the parameter q
changing continuously. The dAT line marks the region of stability
of the RS spin-glass phase, below the line the phase is RSB. The
value of �ndAT diverges in the zero-temperature limit as �n

�−2 ln�3�	 /2�1/2T�, as a consequence the function L��e� at zero
temperature is described by the RSB solution at any value of �e.
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the sample is dominated by the lowest state and the
energy jumps abruptly from E=−� /2 to a lower value
E=−� /4−ln 2 /�.

Coming back to the SK model we observe the following
behaviors of nc�T� and qc�T� approaching the critical tem-
perature:

lim
T→1

nc�T� = lim
T→1

n��T� = 2, �11�

lim
T→1

qc�T� = lim
T→1

q��T� = 0. �12�

Therefore at the point �T=Tc , n=2� the discontinuity in the
free energy vanishes and it represents the endpoint of a the
line nc�T� of first-order phase transitions. More precisely
near the critical point T=Tc and n=2 we have at leading
order in �=Tc−T�0,

n��T� 
 2 + �− 8
3��1/2,

�RS,q�
�n�� = �RS,q�

�n�� 
 fRS + �2

2 ,

nc�T� 
 2 + �− 3��1/2,

qc�T� 
 2�− 3��1/2,

fRS,qc
�T� − fRS�T� 
 − 8�3�− ��3/2.

B. At the critical temperature

On the line T=1 we have ��n ,Tc�= fRS,q=0�Tc�=−1 /4
+ln 2 for n�2 while for positive �n	n−2 the solution is
still RS but with a nonzero value of q; at leading orders we
have

q = 3�n + O��n2� , �13�

��n,1� = fRS,q=0 −
9

8
�n4 + O��n5� . �14�

Note that at the critical temperature the range where
the sample complexity is finite touches fRS and L��f�
=2�f +O��f2�. This behavior is interesting in connection
with the problem of the small deviations of the free energy as
we will discuss below.

C. Low-temperature replica-symmetric region

On the straight line that connects the point �T=1, n=0�
and �T=1, n=2� the potential ��n� has also a phase transi-
tion �see Fig. 1�. On the right of this line we have q=0 and
��n ,T�= fRS,q=0�T�=−� /4+ln 2 /�. On the left the solution
is still RS �except for n=0, see below� and the parameter q
has a continuous transition. At the leading order in �=Tc
−T we have �for n�2 and 0���2−n�

q�n,T� =
2

2 − n
� + O��2� , �15�

��n,T� = fRS,q=0 +
2�1 − n�
3�n − 2�2�3 + O��4� . �16�

Note that the physical ��n ,T� is equal to fRS,q=0�T�
=−� /4−ln 2 /� at any temperature for n=1, while it is larger
for n�1 and smaller for n�1.

The above expansion in powers of � breaks down at
n=2. On the n=2 line the RS solution satisfies the exact
equation

q = tanh �q . �17�

This leads to the following behavior at leading order in �:

q = �6� + O��3/2� , �18�

��2,T� = fRS,q=0 −
3

2
�2 + O��3� . �19�

On the other hand near n=0 the RS solution is inconsis-
tent, indeed for convexity the function n��n� must have a
negative second derivative with respect to n but this condi-
tion fails at any � for sufficiently small values of n. Accord-
ing to Eq. �16� we have for small positive �,

�2n��n�
�n2 = −

4n�3

�n − 2�4 + O��4� . �20�

Thus this quantity goes to zero for small n and we have to
take care of the O��4� term. Taking into account the O��4�
term and expanding in powers of n we have

�RS�n,�� − �RS�0,�� = −
n2�3

24
+

n�4

12
+ O��,n,5� . �21�

From the above equation we see that for n�2� /3+O���2 the
second derivative of the n��n� would be positive and the
solution inconsistent. Thus in the ��n ,T� plane there is a line
nconv���=2� /3+O���2 below which the RS solution is incon-
sistent for convexity reasons and cannot be the correct one.
In the following we will see that actually the RS solution
becomes unstable and should be discarded below a line
ndAT���=4� /3+O���2 which is above the line nconv�T�.

In the low-temperature phase the replica solution is un-
stable at small values of n as the replicon eigenvalue be-
comes negative.22 Similarly to the stability of the RS solution
in the magnetic-field/temperature plane, in the �n ,T� plane
the region of stability is above the dAT line that is specified
by the condition

T2 =
� e−y2/2q�cosh �y�n�1 − tanh2 �y�2dy

� e−y2/2q�cosh �y�ndy

. �22�

For small �=1−T the value of n on the dAT line is

ndAT�T� =
4

3
� + O��2� , �23�

while in the zero-temperature limit q goes to unity and we
have
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ndAT�T� = T�− 2 ln�3�	

2
1/2

T� . �24�

Note that ndAT vanishes in the zero-temperature limit but in
the �T ,n�� plane the dAT line never touches the T=0 line
and the sample complexity L�e� at T=0 is always in the RSB
phase �see Fig. 1�. On the other hand this shows that at any
fixed n�0 the system exit the RSB phase at low enough
temperature and the solution is always RS at zero tempera-
ture. In Fig. 2 we plot the potential ��n ,T� on the dAT line.
It goes to minus infinity at low temperature as

��ndAT�T�,T� = −
�ndAT�T�

4
−

ln 2

�ndAT�T�
. �25�

Note that the second term gives a vanishing correction that
can be rather large at finite temperature.

D. Large n limit

At any finite temperature ��n� is described by the RS
solution at large values of n. Both above and below the criti-
cal temperature, the behavior of ��n� for large values of n is
��n�=−�n /4−ln 2 / ��n�+O�e−2�n�. This leads to
L�f�=−f2+ln 2+o�1� for large negative f; note that this is
the same behavior of the REM.21

IV. REPLICA-SYMMETRY-BREAKING PHASE

Below the dAT line n�ndAT�T� we must break the replica
symmetry. As we can see in Fig. 2 ��n� on the dAT line is
smaller than the most likely free energy �f typ� that is ��n� at
n=0 at the same temperature, in particular ��ndAT� diverges
as −�ndAT�T� /4−ln 2 /�ndAT at low temperatures while for
small �=Tc−T the difference is ��0,T�−��ndAT�T� ,T�
=�5 /135+O��6�. On the other hand being a convex function
��n� must be continuous, therefore we must look for a free
energy that shows some dependence on n also below the dAT
line and the one suggested by Kondor is the most natural
one.

We recall that in Kondor’s approach for n�ndAT�T��1
one introduces a function q�x� defined for n
x
1 that de-
scribes the breaking of replica symmetry in the low-

temperature phase. A functional Fn�q� is obtained such that
��n�=maxq Fn�q�. The function q�x� that maximizes Fn�q�
can be found by solving the stationarity equation
�F /�q�x�=0. This generalizes the standard approach that is
proved to give the correct value of ��n� in the n→0 limit.

The form of the free-energy functional is the usual one;22

the only difference being that all functions are defined in the
interval n
x
1,

Fn�q�x�� 	 −
�

4�1 − 2q�1� + �
n

1

q2�x�dx�
−

1

�n
ln �

−�

+� dy
�2	q�n�

exp�−
�y − h�2

2q�n� �exp��nf�n,y�� .

The function f�x ,y� obeys the following equation:

ḟ = −
q̇

2
�f� + �x�f��2� , �26�

where dots and primes mean, respectively, derivatives with
respect to x and y. The initial condition is

f�1,y� =
1

�
log 2 cosh �y . �27�

The above functional has to be extremized with respect to
the function q�x�. A set of variational equations can be ob-
tained introducing Lagrange multiplier P�x ,y� to enforce
Eqs. �26� and �27�;23,24 the resulting equations are

q�x� = �
−�

�

P�x,y�m2�x,y�dy , �28�

m = f�; ṁ = −
q̇

2
�m� + 2x�mm�� , �29�

Ṗ =
q̇

2
�P� − 2x��mP��� . �30�

These are the same equations of the standard n→0 case.
The only difference is in the initial condition for P�x ,y� that
reads:

P�0,y� = c exp�−
�y − h�2

2q�n�
+ �nf�n,y�� , �31�

where c is a normalization constant in order to have
�P�x ,y�dy=1. Since ��n� is extremized with respect to q�x�,
the conjugate variable f can be obtained as the derivative of
the n��n ,q�x�� evaluated at the saddle point

f = −
�

4�1 − 2q�1� + �
n

1

q2�x�dx − nq2�n�� − �f�n,y�� ,

�32�

where the square brackets represent average with respect to
the measure d�=exp�−�y−h�2 /2q�n�+�nf�n ,y��.

Φ

T

0.2 0.4 0.6 0.8 1
-1.05

-0.95

-0.9

-0.85

-0.8

FIG. 2. The potential ��n ,T� vs temperature at equilibrium
�n=0� �solid� �Ref. 23� and on the dAT line �n=ndAT�T�� �dashed�,
for small �=Tc−T the difference is ��0,T�−��ndAT�T� ,T�
=�5 /135+O��6�. The potential on the dAT line diverges as
−�ndAT�T� /4−ln 2 /�ndAT at low temperatures.
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We have solved the RSB equations and computed q�x�
and ��n ,�� as power series of n and �=1−T;23 the power
series of ��n� up to 18th order is reported in Appendix A.
Kondor originally used the so-called truncated model
valid near the critical temperature and he found that
��n�= feq−9n5 /5120.4 At all orders considered we have con-
firmed that the lowest power of n in the expansion of ��n� is
n5 and that there is also no n6 term. We have verified by an
expansion in powers of n at fixed temperature that the first
term in ��n� is of O�n5� at all temperatures as follows from
an analytic argument presented in Appendixes A and B. This
result is also related to the behavior of the free-energy func-
tional with increasing number of RSB steps.25 An alternative
argument can be done using the expansion of the replicated
free-energy functional F�Qab� �Ref. 22� in powers of the n
n matrix Qab, at least for powers less than 10, where one
can use the explicit form of the terms. The expressions be-
come more complex when the power of Q becomes larger or
equal to 10.

For negative n the saddle point of the ��n� is the standard
q�x� corresponding to n=0, thus ��n�= feq for n�0.26 The
corresponding sample complexity as a function of �f = f
− f typ reads

L�f� = − � for �f � 0,

L�f� = a6/5��f �6/5 + O���f �8/5� for �f 
 0,

where a6/5=−5��c5�−1/56−6/5 and c5 is the coefficient of n5 in
the expansion of ��n�. The function q�x� has a small plateau
from n to some value xc. For xc�x�1 q�x� has the usual
shape, more precisely deviations of q�x� from qfree�x�, i.e.,
the solution corresponding to n=0, are O�n5� in this region.
We note that q�x� is always continuous at the endpoint of the
first plateau xc. At the leading order in n we have

q�x� =
3

2
nq̇�0� + O�n2� for n � x � xc 	

3

2
n + O�n2� ,

q�x� = qfree�x� + O�n5� for xc � x � 1,

where q̇�0� is the derivative of qfree�x� in x=0. Note that the
above expressions are valid at all temperatures since they
have been obtained from the fixed temperature expansion in
powers of n reported in Appendixes A and B. We have also
verified directly these features of q�x� at the order to which
we computed the expansion in n and �.

It is interesting to note that from the third order on, all
derivatives of ��n� �with respect to n, T, and both� are dis-
continuous on the dAT line, i.e., the transition is third order.
This is the same behavior of the free energy on the dAT line
in the �h ,T� plane.27

When �→� the complexity L�f� goes to a well-defined
limit therefore from Eq. �6� ��n� is actually a function of
�n,28 as a consequence the coefficient ca of na in the power
series of ��n� diverges as �a in the zero-temperature limit.

The series in power of � of c5 �the n5 coefficient in ��n��
can be used to obtain its behavior in the whole low-
temperature phase provided one uses the information that
c5��5 in the zero-temperature limit. In Fig. 3 we plot vari-

ous Padé approximants obtained from the series of c5�−5.
From the Padé approximants of c5�−5 and c7�−7 we estimate
c5
−0.0060�2��5 near T=0 and c7
−0.0150�5��7 in the
SK model. Alternatively one can use the following exact
relationship valid at all temperatures �see Appendix B�

c5 = −
9

640
�5�Tq̇�0��3, �33�

where q̇�0� is the derivative in x=0 of the usual function q�x�
for n→0. The zero-temperature limit of Tq̇�0� is finite and
was obtained resumming its expansion in powers of � as
0.743�2� in Ref. 23. Recently a more precise estimate,
0.743 368, has been obtained working directly at zero
temperature.25 This gives lim�→�c5�−5=−0.0057766.

The zero-temperature complexity for negative �e then
reads

L��e� = − 1.63250��e�6/5 + 3.1�1���e�8/5 + O��e8/5� .

The second term however yields a big correction to the first
one, indeed: �i� the exponents of the series grow slowly �as
�6+ i� /5, i=0,2 ,3 , . . ., note that there is no n6 term in ��n��
and �ii� the coefficients of the series grow quickly with order.
Actually we expect the series to be asymptotic as is usually
the case in this context.23 Therefore in order to have a good
control on L��e� we have adopted a method previously used
in Ref. 23 to obtain q�x ,�� from its series in powers of x and
�. We have transformed the series of L��f� in powers of
�f and � in a power series of just � by setting �f
= � 2

45s5+ 1
4�7�c, with c a parameter in the range �0,1�. The

corresponding series in powers of � were resummed for any
given c through Padé approximants obtaining the curve
L��e� in parametric form.

In Fig. 4 we have plotted the function L��f� at tempera-
ture T=0.7 obtained by resumming the series of
L��f�� ,c�� /�6 by means of a Padé approximant of order
�8,5� �we have used the series of ��n� to 18th order reported
in the Appendix A�.

In Fig. 5 we plot the sample complexity L��e� at zero
temperature. In the range of energy differences considered
the deviations from the values yielded by L��e�
=−1.632 50��e�6/5 are no larger than 1%. This support the
goodness of both estimates since they were obtained by dif-
ferent resummation schemes.

T

0.2 0.4 0.6 0.8 1

-0.006

-0.004

-0.003

-0.002

FIG. 3. Four Padé approximants �P�3,3�, P�3,4�, P�4,3�,
P�4,4�� of c5�−5 as a function of the temperature; c5�−5 is equal to
−9 /5120 at T=1.
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By resumming the series of ��n� �see below�, we have
been able to obtain the sample complexity in the whole low-
temperature phase and for finite L�f�. In Fig. 5 we compare
the sample complexity to the numerical data at zero tempera-
ture of Ref. 8 finding a very good agreement. For each sys-
tem size N we have plotted LN=ln�P��eN� /N5/6� /N,
with�eN=e−eN �the average energy at size N�. We have used
this definition so that L goes to a constant for �eN=0. The
errors on LN have been computed through error propagation
and single events have been discarded to reduce the error.
The quantitative agreement of the numerical with the theory
is quite good.

In Fig. 6 we have also plotted the numerical complexity
�from Ref. 8� as a function of the absolute value of the en-
ergy for different sample sizes at zero temperature. Data
have been shifted vertically by an amount �N so that the
complexity vanishes at the typical energy Etyp=−0.7633.
Since this certainly holds in the thermodynamic limit �N
goes to zero at large N. Note that for E�Etyp the numerical
data approach the theoretical prediction from below. This
rules out the alternative prediction of Ref. 14 that yields
L��e�=−�.

V. ON THE MEAN-FIELD SPHERICAL SPIN-GLASS
MODEL

The RS expression of ��n ,T� of the spherical model
is29

��n,T��z,q� = −
�

4
−

z

�
−

1 − n

4
�q2

+
1

2�
�ln�z +

�2

2
q�1 − n��

+ �n − 1�ln�z +
�2

2
q� . �34�

The above expression has to be extremized with respect the
parameters q and z. The phase diagram of the ��n ,T� in the
�T ,�n� plane is qualitatively similar to that of the SK model
�see Fig. 1� except for the absence of the dAT line. In par-
ticular above Tc=1 the solution is paramagnetic �q=0� for
small n and does not depend on n,

��n,�� = −
1

2�
−

�

4
−

ln 2

2�
. �35�

At some temperature-dependent value n=nc�T� there is a
first-order transition. The line nc�T� ends on the point
�T=1 ,n=2�; around that point it goes as nc���
2+3�−�
for negative �=Tc−T. The straight line from the point
�T=1, n=0� to the point �T=1, n=2� divides the paramag-
netic from the spin glass �q�0�, at variance with the nc�T�
line; the parameter q varies continuously upon crossing this
line. At all temperatures the physical value of ��n ,T� is
smaller than expression �35� for n�1 while it is larger or
equal to it for n
1.

Below the critical temperature only the spin-glass phase is
present. The main difference with respect to the SK model is
the absence of the dAT line in the phase diagram, meaning

∆f

L

-0.0002 -0.00015 -0.0001 -0.00005

-0.08

-0.06

-0.04

-0.02

FIG. 4. Sample complexity L��f� at T=0.7, obtained through an
�8,5� Padé approximant to the parametric power series in �. Dot
marks the RSB-RS transition at �f =−1.6410−4.
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L
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theory

FIG. 5. �Color online� Com-
parison between the numerical
and analytical sample complexi-
ties at zero temperature �see text�.
Data are those of Ref. 8. The
sample complexity was obtained
through an �8,5� Padé approxi-
mant to the parametric power
series in �; the deviations
from the expression L��e�
=−1.632 50��e�6/5 are less than
1% in this range of energy
differences.
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that the RS solution remains correct in the limit n→0.29 The
expression of ��n ,T� for T�1 at small values of n is

��n,�� =
1

4�
− 1 −

ln��/2�
2�

−
�� − 1�3

24�
n2 + O�n3� . �36�

Note that again the linear term in n is missing and the sample
complexity is non-Gaussian

L�f� = − � for �f � 0,

L�f� = −
4�2

3
��f �3/2� �

� − 1
3/2

for �f 
 0. �37�

At zero temperature the energy of the model is equal to mi-
nus the largest eigenvalue of a Gaussian random matrix

e = −
�max

�2N
. �38�

The small deviation distribution of the largest eigenvalue of
a Gaussian random matrix is given by the Tracy-Widom law
F1�x� �Ref. 30� in terms of the rescaled variable x=�2��max
−�2N�N1/6. The behavior of F1�x� for x→ +� is

ln F1�x� � −
2

3
x3/2 = −

4�2

3
��e�3/2N , �39�

where we have used x=2N2/3��e� as follows from Eq. �38�.
Thus Eqs. �37� and �39� give the same prediction and there is
perfect matching between small and large deviations. A simi-
lar matching has been also observed for positive deviations
�e whose probability scales as exp�O�N2��.17

VI. ON SMALL DEVIATIONS

In this section we discuss the connection between small
deviations and large deviations of the free energy. The func-

tion ��n� is the natural object to describe the large devia-
tions of f from its typical value. In Ref. 5 it was argued that
it provides also information on the small deviations of the
free energy arguing that they scale as N−5/6.

The probability distribution of the free energy per spin
PN�f� is concentrated near the typical free energy f typ in the
large N limit. The small deviations correspond to values of
the free-energy difference that have a finite probability
PN�f�=O�1� to be observed in the thermodynamic limit,
which is a region near f typ that shrinks to zero in the thermo-
dynamic limit. On the other hand the large deviations corre-
spond to the exponentially small tails of PN�f� corresponding
to O�1� values of the free-energy difference. Thus in prin-
ciple small and large deviations are fairly different objects
and it may seem strange that one can determine the scaling
of the peak from a large deviation calculation.

Typically the probability of the small deviations scales as
limn→�PN�f�= p��f − fN� /N−a�, where p�x� is a scaling func-
tion that does not depend on N, a is some positive exponent,
and fN is the N-dependent mean value of the free energy that
converges to f typ as fN= f typ+N−b for some positive b.

The argument that connects large and small deviations is
not rigorous and relies on the assumption that there is
smooth matching between the behavior of the peak of PN�f�
and the left tail corresponding to positive values of n. Under
this assumption one argues that the region of the peak corre-
sponds to values of the free-energy difference �f typ− f� such
that the large deviation expression �4� is finite. This happens
for �f typ− f�=O�N−5/6� and leads to the aforementioned pre-
diction a=5 /6. In other words the matching argument corre-
sponds to the assumption that the function p�x� provides a
good description of the distribution of the free energies up to
free-energy differences �f =O�1�, i.e., far beyond its natural
range of validity �f =O�N−a�.

It is interesting to note that in order to characterize the
small deviations one should take the n→0 limit first and

e

L
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FIG. 6. �Color online� Plot of
the numerical complexity �from
Ref. 8� as a function of the abso-
lute value of the energy for differ-
ent sample sizes at zero tempera-
ture. Data have been shifted
vertically by an amount �N so that
the complexity vanishes at the
typical energy Etyp=−0.7633.
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then the N→� limit while the two limits have to be inverted
to obtain the large deviations. In the following we discuss
what kind of quantitative information can be extracted from
the thermodynamic limit of ��n� under the assumption that
there is a smooth matching between small and large devia-
tions.

The starting observation is that at any finite value of N,
n��n� is the generating function of the cumulants of the
distribution of F. If in the thermodynamic limit ��n�= f typ
+canaN−b, one would consider the variable x= �F
−FN� /N�1−b�/�a+1�, where FN is the average free energy at size
N, and claim that the ath cumulant of its distribution function
f�x� is finite while all higher cumulants are zero. In particular
in the high-temperature phase we have ��n�= f typ+canN−1

and we would say that the fluctuations of F around its aver-
age value FN are normal with finite variance because all cu-
mulants higher than the second vanish.

Extending this argument to the low-temperature case one
could say that all the cumulants greater than the sixth of the
variable x= �F−FN� /N1/6 vanish. This conclusion however is
wrong because the function ��n� in the low-temperature
phase has a first-order phase transition at n=0 and the two
limits N→� and n→0 cannot be exchanged in computing
derivatives of ��n�. The only exception is the zeroth deriva-
tive ��0� �the average free energy�. This can be also under-
stood noticing that by fixing n and taking the limit N→�,
the actual value of x goes to infinity, therefore there is in
principle no way to get information on the small-x region
once the thermodynamic limit has been taken. However un-
der the assumption of smooth matching between small and
large deviations it is also natural to assume that the small
deviations of the free energy behave for large negative x as

p�x� � exp�a6/5�x�6/5� . �40�

In this context it is instructive to consider the REM at zero
temperature.21 The complexity as a function of �e	e
−�ln 2 behaves as L��e�=−�c�e for �e�0 �with �c
=2�ln 2� while L=−� for positive �e. Using the matching
argument between small and large deviations we would con-
clude that the extensive energy has finite variance and that
the behavior of the rescaled variable x=N�e−eN� for x nega-
tive and large is exp�−�cx�. This prediction is consistent with
the known fact that the small deviations obey the Gumbel
law. However in order to recover the full Gumbel distribu-
tion of small deviations we should take the n→0 limit first.
Note also that the deviations of E from its mean EN �which is
O�1� in this case� has nothing to do with the deviations of EN
from its thermodynamic limit which is O�ln N� in the
REM.21

Another example of matching between small and large
deviations is provided by the spherical model as discussed in
Sec. V. On the other hand the very same SK model at the
critical temperature seems to provide an example of the fail-
ure of the matching argument. Indeed above the critical tem-
perature the sample complexity is −� for �f �0 and has no
role in the finite-size fluctuations of the free energy which
instead are controlled by corrections to the q=0 solutions.5,31

The free energy F has a finite variance that diverges for T
→Tc. Therefore it is expected that the free-energy variance
diverges with N at the critical temperature. Indeed extending
the computation of Ref. 31, Aspelmeier3 recently argued that
the variance diverges logarithmically with N. On the other
hand, at the critical temperature, the range where the sample
complexity is finite touches fRS and L��f�=2�f +O��f2�;
therefore applying the matching argument one would
wrongly conclude that the behavior of the distribution of F is
exp�2F� for large negative F and that its variance remains
finite. However we believe that the matching argument is
correct for the SK model below the critical temperature and
that its failure at the critical temperature can be explained
noticing that there is a phase transition in the �n ,T� plane on
the straight line connecting the points �0,1� and �2,0� and all
the eigenvalues of ��Qab� vanish on this line.

VII. CONCLUSIONS

We have computed the function ��n ,T� of the SK model
using the hierarchical ansatz and discussed its behavior in
detail both above and below the de Almeida–Thouless line in
the �n ,T� plane. In particular in the low-temperature phase
we have confirmed at all orders Kondor’s early result4 on the
O�n5� scaling. The analytical argument provides an exact re-
lationship between the coefficient of the n5 term and the x
=0 derivative of the standard function q�x�. We note that the
same approach provides a similar exact relationship between
q̇�0� and the O�h10/3� term in the equilibrium free energy in
presence of a magnetic field h. By resumming the series we
have been able to obtain the sample complexity at zero tem-
perature. Existing numerical data display a remarkable agree-
ment with this prediction. We mention that the presence of a
magnetic field reintroduces a O�n2� dependence in n��n�
leading back to Gaussian fluctuations of the free energy.

APPENDIX A: POWER SERIES OF �(n)

In this appendix we report the power series of ��n� of the
SK model in the low-temperature phase up to the 18th order
in n and �=1−T. At all order in � the smallest power of n is
n5 and there is no n6 term

��n� = −
1

4
− ln2 −

�

4
+ �ln2 −

�2

4
−

�3

12
+

�4

24
−

�5

120
+

3�6

20
−

79�7

140
+

1679�8

560
−

13679�9

720
+

1728361�10

12600
−

19214684�11

17325

+
2741593487�12

277200
−

3939806687�13

40950
+

773933492429�14

764400
−

86662083146207�15

7567560
+

139738065304401461�16

1009008000
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−
45875375549246420713�17

25729704000
+

11276190176083149262457�18

463134672000
+ n5�−

9

5120
−

99�

5120
−

27�2

320
−

279�3

1280
−

981�4

2560

−
351�5

400
+

2799�6

12800
−

344241�7

22400
+

47010861�8

358400
−

36684189�9

25600
+

830566899�10

51200
−

1928757352257�11

9856000

+
98506298782713�12

39424000
−

8635947355938261�13

256256000
 + n7� 81

143360
−

2673�

143360
−

7047�2

35840
−

35559�3

35840
−

75573�4

35840

−
1943757�5

179200
+

7442847�6

179200
−

762113853�7

1254400
+

17011569051�8

2508800
−

210723811119�9

2508800
+

13663823711841�10

12544000

−
1027400967213903�11

68992000
 + n8� 243

32768
+

4131�

32768
+

15309�2

16384
+

34263�3

8192
+

429381�4

32768
+

2740311�5

81920
+

11253573�6

163840

+
107945217�7

573440
−

669127959�8

4587520
+

12126319893�9

2293760
−

183401224893�10

3276800
 + n9�−

60021

5734400
−

1720683�

5734400

−
3703563�2

1433600
−

48430143�3

2867200
−

213993819�4

5734400
−

2813451327�5

7168000
+

2765750427�6

1146880
−

1836578874951�7

50176000

+
379740674928681�8

802816000
−

189083279254923�9

28672000
 + n10� 155277

3276800
+

911979�

819200
+

36721917�2

3276800
+

110699379�3

1638400

+
1837467099�4

6553600
+

2973858543�5

3276800
+

76627955097�6

32768000
+

104357662929�7

16384000
+

853398339489�8

131072000


+ n11�−
829433601

5046272000
−

22603330989�

5046272000
−

7219643481�2

180224000
−

20133254457�3

57344000
−

1149209550873�4

2523136000

−
218994700592277�5

12615680000
+

1073108844538299�6

6307840000
−

61281594304289307�7

22077440000
 + n12�131410269

183500800
+

2903445891�

183500800

+
4533651�2

25600
+

22510325169�3

18350080
+

1165811276367�4

183500800
+

5189828163921�5

229376000
+

89579196304317�6

917504000


+ n13�−
15299148393873

5651824640000
−

14089860473859�

209924915200
−

330886579531671�2

565182464000
−

13990469422488399�3

1836843008000

+
20015370592779843�4

1335885824000
−

9384066047520578313�5

10496245760000
 + n14�66042560169

5138022400
+

580058908857�

2569011200

+
15101741931291�2

5138022400
+

125170590832281�3

6422528000
+

7885818877083003�4

51380224000
 + n15�−

1557529661529486369

29389488128000000

−
13663672258178594727�

14694744064000000
−

107529809054090820291�2

14694744064000000
−

46100805957050412573�3

262406144000000


+ n16�190687314873528513

723433553920000
+

320621966627776497�

180858388480000
+

18912071856450181023�2

361716776960000


+ n17�−
126373462658844234883011

111915170791424000000
−

92659942781039607442731�

55957585395712000000
 + n1810254234479592769713

1808583884800000
. �A1�

APPENDIX B: THE VARIATIONAL FREE ENERGY AND
THE PLATEAU OF q(x)

In this appendix we consider the effect of a small plateau
in the function q�x� at small values of x. Such a plateau in the
function q�x� is present in two notable cases: �i� when a

magnetic field is present and �ii� when the parameter n is
finite. In both cases the perturbative solution in power series
near the critical temperature shows that the dependence of
the plateau and of the free energy on the small perturbations
�i.e., the value of n or h� is anomalous: �i� we have seen in
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the previous sections that the behavior of ��n� at h=0 is
��n�= feq+O�n5� and �ii� it is well known that the fourth
derivate of the free energy �n=0� with respect to the field is
divergent f�h�= feq�0�−h2 /2+O�h10/3�.22,27 The origin of this
can be traced back to the fact that the variation of the free
energy in presence of a small plateau is a fifth order effect.
Here we show that this can be proved at all temperatures.

We also note that the fact that the presence of a small
plateau of eight q0 gives an O�q0

5� correction to the free en-
ergy provides further insight into one of the earliest observa-
tions on the RSB solution,32 namely, the fact that the correc-
tions to the free energy due to using a finite number K of
RSB steps decrease like K−4. Indeed the function q�x� in this
case is a set of K small plateaus with O�K−1� differences
from the true solution and it is natural to expect the total
free-energy correction to be O�K−5�K.

We consider the variation of the free-energy functional
��n ,h ,q�x�� as a function of n, h, and q0 under the assump-
tion that q�x� is unperturbed for x�xplateau �where xplateau is
such that q�xplateau�=q0� while q�x�=q0 for n�x�xplateau.
The main result of this appendix is the following expression
valid at any temperature:

��n,h,q0� − ��0,0,0�

= −
h2

2
−

h2n�q0

2
−

n2�2q0
3

6
+ −

�2q0
5

15q̇2�0�
+

�h2q0
2

4q̇�0�

+
5�2nq0

4

24q̇�0�
+ sixth order terms, �B1�

where q̇�0� is the derivative of the Parisi solution q�x� in x
=0 for h=n=0. The meaning of the last term is that this
expression is valid at all temperature but at the lowest orders
in h, n, and q0. The first term −h2 /2 yields the known result

that the zero-magnetic-field susceptibility is equal to one in
the whole spin-glass phase while the remaining terms are
fifth order in q0 in the sense that n=O�q0� and h2=O�q0

3�.
Extremizing the above expression with respect to q0 at

h=0 we get

q0 =
3

2
nq̇�0� + o�n� �B2�

and33

��n� = feq −
9

640
�n��5�Tq̇�0��3 + O�n7� . �B3�

In the last two equations and in the following, the expression
o�x� means term of an order smaller than x while O�x� means
term of the same order than x. Conversely, extremizing with
respect to q0 at n=0 we get

q0 = �3Tq̇�0�
2

1/3

h2/3 + o�h2/3� �B4�

and

f�h� = f�0� −
h2

2
+

3

20
� 9

4Tq̇�0�
1/3

h10/3 + o�h10/3� . �B5�

Thus the anomalous behavior of the free energy at small n or
h found near the critical temperature holds true at all orders
and the coefficients of the terms O�n5� and O�h10/3� in the
above expressions depend on the temperature only through
the term Tq̇�0�, which has a finite limit at zero temperature.

The quantity q̇�0� can be computed in power series near
the critical temperature23 and reads

q̇�0� =
1

2
+

3�

2
+ 2�3 − 9�4 +

336�5

5
− 481�6 +

136 884�7

35
−

979 779�8

28
+

71 633 011�9

210
−

1 077 802 999�10

300

+
18 770 216 489�11

462
−

68 028 264 769 963�12

138 600
+

1 136 615 361 900 763�13

180 180
−

1 084 041 597 207 443 333�14

12 612 600

+
117 077 323 215 309 512 399�15

94 594 500
−

4 061 851 935 671 767 738 451�16

216 216 000
+

551 046 886 980 280 618 398 589�17

1 837 836 000

−
1 162 702 256 772 757 485 034 973 381�18

231 567 336 000
+

193 682 918 656 993 987 102 843 106 053�19

2 199 889 692 000
+ O��20� . �B6�

This expression can be resummed through Padé approximants23 in order to obtain quantitative predictions in the whole
low-temperature phase, e.g., in the zero-temperature limit we have23
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lim
T→0

Tq̇�0� = 0.743 � 0.002. �B7�

A more precise estimate limT→0 Tq̇�0�=0.743 368 was ob-
tained recently working directly at T=0 in Ref. 25. From the
power-series expression of q̇�0� the corresponding power se-
ries of the coefficients of the O�n5� and O�h10/3� terms in the
expressions �B3� and �B5� can be computed and they are in
full agreement with the corresponding expressions computed
through the power-series solution of the variational equa-
tions, i.e., Eq. �A1� above and Eq. �10� of Ref. 27.

The variational expression Eq. �B1� can be obtained by
computing the function f�x ,y� as a power series of x around

x=0 using the evolution Eq. �26� up to the fifth order. To
obtain the result we need to use the fact that f�x ,y� is an even
function of y and most importantly the following three exact
statements concerning the functions q�x� and f�x ,y� com-
puted at n=h=0 �see Ref. 23 for their derivation�,

q̈�0� = 0, �B8�

f �0,2��0,0� = 1, �B9�

f �0,4��0,0� = −� 2

Tq̇�0�
. �B10�
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